A Graph Reduction Step Preserving Element-Connectivity and Applications
نویسندگان
چکیده
Given an undirected graph G = (V,E) and subset of terminals T ⊆ V , the element-connectivity κ G (u, v) of two terminals u, v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V \ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [21] gave a graph reduction step that preserves the global element-connectivity of the graph. We show that this step also preserves local connectivity, that is, all the pairwise element-connectivities of the terminals. We give two applications of this reduction step to connectivity and network design problems. • Given a graph G and disjoint terminal sets T1, T2, . . . , Tm, we seek a maximum number of elementdisjoint Steiner forests where each forest connects each Ti. We prove that if each Ti is k element connected then there exist Ω( k log h log m ) element-disjoint Steiner forests, where h = | ⋃ i Ti|. If G is planar (or more generally, has fixed genus), we show that there exist Ω(k) Steiner forests. Our proofs are constructive, giving poly-time algorithms to find these forests; these are the first non-trivial algorithms for packing element-disjoint Steiner Forests. • We give a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna [12] in the context of the single-sink k-vertex-connectivity problem; this yields a simple and alternative analysis of an O(k log n) approximation. Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find more applications in the future.
منابع مشابه
On Element-Connectivity Preserving Graph Simplification
The notion of element-connectivity has found several important applications in network design and routing problems. We focus on a reduction step that preserves the element-connectivity [18,4,3], which when applied repeatedly allows one to reduce the original graph to a simpler one. This pre-processing step is a crucial ingredient in several applications. In this paper we revisit this reduction ...
متن کاملSome Open Problems in Element-Connectivity
The notion of element-connectivity has found several important applications. An important tool for these applications is a graph reduction step that preserves element-connectivity [19, 4]. In this article we survey several open problems related to this reduction step as well as some related problems on edge-connectivity.
متن کاملA note on the order graph of a group
The order graph of a group $G$, denoted by $Gamma^*(G)$, is a graph whose vertices are subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $|H|big{|}|K|$ or $|K|big{|}|H|$. In this paper, we study the connectivity and diameter of this graph. Also we give a relation between the order graph and prime graph of a group.
متن کاملA note on connectivity and lambda-modified Wiener index
In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
متن کاملOn the Szeged and Eccentric connectivity indices of non-commutative graph of finite groups
Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009